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Section 1  An overview of PSHA 

 

“The language of probability allows us to speak quantitatively about some situation which 
may be highly variable, but which does have some consistent average behavior. Our most 
precise description of nature must be in terms of probabilities.”             
       −Richard Feynman 

 

1.1 Introduction  

The goal of many earthquake engineering analyses is to ensure that a structure can withstand a given 
level of ground shaking while maintaining a desired level of performance. But what level of ground 
shaking should be used to perform this analysis? There is a great deal of uncertainty about the 
location, size, and resulting shaking intensity of future earthquakes. Probabilistic Seismic Hazard 
Analysis (PSHA) aims to quantify these uncertainties, and combine them to produce an explicit 
description of the distribution of future shaking that may occur at a site. 

In order to assess risk to a structure from earthquake shaking, we must first determine the annual 
probability (or rate) of exceeding some level of earthquake ground shaking at a site, for a range of 
intensity levels. Information of this type could be summarized as shown in Figure 1.1, which shows 
that low levels of intensity are exceeded relatively often, while high intensities are rare. If one was 
willing to observe earthquake shaking at a site for thousands of years, it would be possible to obtain 
this entire curve experimentally. That is the approach often used for assessing flood risk, but for 
seismic risk this is not possible because we do not have enough observations to extrapolate to the low 
rates of interest. In addition, we have to consider uncertainties in the size, location, and resulting 
shaking intensity caused by an earthquake, unlike the case of floods where we typically only worry 
about the size of the flood event. Because of these challenges, our seismic hazard data must be 
obtained by mathematically combining models for the location and size of potential future earthquakes 
with predictions of the potential shaking intensity caused by these future earthquakes. The 
mathematical approach for performing this calculation is known as Probabilistic Seismic Hazard 
Analysis, or PSHA.  

The purpose of this document is to discuss the calculations involved in PSHA, and the motivation 
for using this approach. Because many models and data sources are combined to create results like 
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those shown in Figure 1.1, the PSHA approach can seem opaque. But when examined more carefully, 
the approach is actually rather intuitive. Once understood and properly implemented, PSHA is flexible 
enough to accommodate a variety of users’ needs, and quantitative so that it can incorporate all 
knowledge about seismic activity and resulting ground shaking at a site. 

 
Figure 1.1: Quantification of the possibility of intense ground shaking at a site.  

Probability calculations are a critical part of the procedures described here, so a basic knowledge 
of probability and its associated notation is required to study this topic. A review of the concepts and 
notation used in this document is provided for interested readers in Section 4. 

1.2 Deterministic versus probabilistic approaches 

The somewhat complicated probabilistic evaluation could be avoided if it was possible to identify a 
“worst-case” ground motion and evaluate the facility of interest under that ground motion. This line of 
thinking motivates an approach known as deterministic hazard analysis, but we will see that 
conceptual problems arise quickly and are difficult to overcome. 

1.2.1 Variability in the design event 

A designer looking to choose a worst-case ground motion would first want to look for the maximum 
magnitude event that could occur on the closest possible fault. This is simple to state in theory, but 
several difficulties arise in practice. Consider first the hypothetical site shown in Figure 1.2a, which is 
located 10 km from a fault capable of producing an earthquake with a maximum magnitude of 6.5. It 
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is also located 30 km from a fault capable of producing a magnitude 7.5 earthquake. The median 
predicted response spectra from those two events are shown in Figure 1.2b. As seen in that figure, the 
small-magnitude nearby event produces larger spectral acceleration amplitudes at short periods, but 
the larger-magnitude event produces larger amplitudes at long periods. So, while one could take the 
envelope of the two spectra, there is not a single “worst-case” event that produces the maximum 
spectral acceleration amplitudes at all periods.  

 
Figure 1.2: (a) Map view of an illustrative site, with two nearby sources capable of producing 
earthquakes. (b) Predicted median response spectra from the two earthquake events, illustrating that 
the event producing the maximum response spectra may vary depending upon the period of interest 
(prediction obtained from the model of Campbell and Bozorgnia 2008).  

While the site shown in Figure 1.2a produces some challenges in terms of identifying a worst-case 
event, an even greater challenges arise when faults near a site are not obvious and so the seismic 
source is quantified as an areal source capable of producing earthquakes at any location, as shown in 
Figure 1.3. In this case, the worst-case event has to be the one with the maximum conceivable 
magnitude, at a location directly below the site of interest (i.e., with a distance of 0 km). This is clearly 
the maximum event, no matter how unlikely its occurrence may be. For example, in parts of the 
Eastern United States, especially near the past Charleston or New Madrid earthquakes, one can quite 
feasibly hypothesize the occurrence of magnitude 7.5 or 8 earthquakes immediately below a site, 
although that event may occur very rarely.  
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Figure 1.3: Example site at the center of an area source, with potential earthquakes at zero distance 
from the site.  

1.2.2 Variability of ground motion intensity for a given earthquake event 

While the choice of a “worst-case” earthquake can be difficult and subjective, as discussed in the 
previous section, an even greater problem with deterministic hazard analysis is the choice of worst-
case ground motion intensity associated with that earthquake. The response spectra plotted in Figure 
1.2 are the median1 spectra predicted by empirical models calibrated to recorded ground motions. But 
recorded ground motions show a very large amount of scatter around those median predictions. By 
definition, the median predictions shown in Figure 1.2b are exceeded in 50% of observed ground 
motions having the given magnitudes and distances. 

An example of the large scatter around those ground motion prediction models is seen in Figure 
1.4, which shows spectral acceleration values at 1 second that were observed in a past earthquake 
(1999 Chi-Chi, Taiwan), plotted versus the closest distance from the earthquake rupture to the 
recording site. Note that observations at distances between 1 and 3 km vary between 0.15g and more 
than 1g—nearly an order of magnitude. Also plotted are the mean predicted lnSA values, along with 
bounds illustrating one standard deviation above and below that mean. The scatter of the log of 

                                                      
1 There is considerable opportunity for confusion when referring to means and medians of predicted ground 
motion intensity. Ground motion predictions models, such as the one used to make Figure 1.4, provide the mean 
and standard deviation of the natural logarithm of spectral acceleration (lnSA) or peak ground acceleration 
(lnPGA). These lnSA values are normally distributed, which means that the non-logarithmic SA values are 
lognormally distributed. The exponential of the mean lnSa value can be shown to equal the median SA value. It 
is easiest to work with lnSA values in the calculations that follow, so this text will often refer to mean lnSA 
values rather than median SA values. Plots such as Figure 1.4 will show non-logarithmic SA, because the units 
are more intuitive, but the axis will always be in logarithmic scale so that the visual effect is identical to if one 
was viewing a plot of lnSA.  
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spectral accelerations around the mean prediction is well-represented by a normal distribution (leading 
to symmetric scatter in Figure 1.4, which is plotted in logarithmic scale). 

The one-standard-deviation bounds should enclose about 2/3 of the observed values if the 
variations are normally distributed, and that is the case here. To account for this scatter, deterministic 
hazard analyses sometimes specify a “mean plus one standard deviation” response spectra, but even 
that will be exceeded 16% of the time2. Because the scatter is normally distributed, there is no 
theoretical upper bound on the amplitude of ground motion that might be produced at a given 
magnitude and distance3.  

 
Figure 1.4: Observed spectral acceleration values from the 1999 Chi-Chi, Taiwan earthquake, 
illustrating variability in ground motion intensity. The predicted distribution comes from the model 
of Campbell and Bozorgnia (2008). 

1.2.3 Can we use a deterministic approach, given these uncertainties? 

Given these challenges, it is clear that whatever deterministic design earthquake and ground motion 
intensity is eventually selected, it is not a true “worst-case” event, as a larger earthquake or ground 
motion can always plausibly be proposed. Without a true worst-case event to consider, we are left to 

                                                      
2 This number comes from considering normally-distributed residuals. As seen in Table 4.1, the probability of a 
normal random variable being more than one standard deviation greater than its mean (i.e., 1 - Φ(1) ) is 0.16.  
3 There is almost certainly some true physical upper bound on ground motion intensity caused by an inability of 
the earth to carry more intense seismic waves without shattering or otherwise failing. Current research suggests 
that this limit may be important to structures designed for extremely intense ground motions, such as nuclear 
waste repositories, but it almost certainly has no practical impact on more common structures such as buildings 
or bridges, which are analyzed for ground motion intensities that are exceeded once every few thousand years.  
Thus, the assumption of not theoretical upper bound is reasonable and appropriate in most cases. 
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identify a “reasonably large” event. That is often done by choosing a nearby large-magnitude event, 
and then identifying some level of reasonable intensity associated with this event. While it is possible 
to proceed using this type of approach, two issues should be made clear. 1) The resulting ground 
motion is not a “worst-case” ground motion. 2) The result may be very sensitive to decisions made 
with regard to the chosen scenario magnitude and ground motion intensity.  An event chosen in this 
manner was historically described as a “Maximum Credible Earthquake,” or MCE. More recently, 
however, the acronym has been retained but taken to mean “Maximum Considered Earthquake,” in 
recognition of the fact that larger earthquakes (and larger ground motion intensities) are likely to be 
credible as well. This “worst-case” thinking will be abandoned for the remainder of the document, 
although the problems identified here will serve as a useful motivation for thinking about probability-
based alternatives.  

1.3 Probabilistic seismic hazard analysis calculations 

In this section, we will describe a probability-based framework capable of addressing the concerns 
identified above. Rather than ignoring the uncertainties present in the problem, this approach 
incorporates them into calculations of potential ground motion intensity. While incorporation of 
uncertainties adds some complexity to the procedure, the resulting calculations are much more 
defensible for use in engineering decision-making for reducing risks. 

With PSHA, we are no longer searching for an elusive worst-case ground motion intensity. Rather, 
we will consider all possible earthquake events and resulting ground motions, along with their 
associated probabilities of occurrence, in order to find the level of ground motion intensity exceeded 
with some tolerably low rate. At its most basic level, PSHA is composed of five steps.  

1. Identify all earthquake sources capable of producing damaging ground motions. 

2. Characterize the distribution of earthquake magnitudes (the rates at which earthquakes 
of various magnitudes are expected to occur). 

3. Characterize the distribution of source-to-site distances associated with potential 
earthquakes. 

4. Predict the resulting distribution of ground motion intensity as a function of earthquake 
magnitude, distance, etc. 

5. Combine uncertainties in earthquake size, location and ground motion intensity, using a 
calculation known as the total probability theorem. 

These steps will be explained in more detail below. 
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The end result of these calculations will be a full distribution of levels of ground shaking intensity, 
and their associated rates of exceedance. The illusion of a worst-case ground motion will be removed, 
and replaced by identification of occurrence frequencies for the full range of ground motion intensities 
of potential interest. These results can then be used to identify a ground motion intensity having an 
acceptably small probability of being exceeded.  
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Figure 1.5: Schematic illustration of the basic five steps in probabilistic seismic hazard analysis. (a) 
Identify earthquake sources. (b) Characterize the distribution of earthquake magnitudes from each 
source. (c) Characterize the distribution of source-to-site distances from each source. (d) Predict the 
resulting distribution of ground motion intensity. (e) Combine information from parts a-d to 
compute the annual rate of exceeding a given ground motion intensity.  
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1.3.1 Identify earthquake sources 

In contrast to the deterministic thinking above, which focused only on the largest possible earthquake 
event, here we are interested in all earthquake sources capable of producing damaging ground motions 
at a site. These sources could be faults, which are typically planar surfaces identified through various 
means such as observations of past earthquake locations and geological evidence. If individual faults 
are not identifiable (as in the less seismically active regions of the eastern United States), then 
earthquake sources may be described by areal regions in which earthquakes may occur anywhere. 
Once all possible sources are identified, we can identify the distribution of magnitudes and source-to-
site distances associated with earthquakes from each source. 

1.3.2 Identify earthquake magnitudes 

Tectonic faults are capable of producing earthquakes of various sizes (i.e., magnitudes). Gutenberg 
and Richter (1944) first studied observations of earthquake magnitudes, and noted that the distribution 
of these earthquake sizes in a region generally follows a particular distribution, given as follows 

 log m a bmλ = −  (1.1) 

where λm is the rate of earthquakes with magnitudes greater than m, and a and b are constants. This 
equation is called the Gutenberg-Richter recurrence law. Figure 1.6 illustrates typical observations 
from a fault or region, along with the Gutenberg-Richter recurrence law given by equation 1.1.  

The a and b constants from equation 1.1 are estimated using statistical analysis of historical 
observations, with additional constraining data provided by other types of geological evidence4. The a 
value indicates the overall rate of earthquakes in a region, and the b value indicates the relative ratio of 
small and large magnitudes (typical b values are approximately equal to 1).  

Equation 1.1 can also be used to compute a cumulative distribution function5 (CDF) for the 
magnitudes of earthquakes that are larger than some minimum magnitude mmin (this conditioning is 
used because earthquakes smaller than mmin will be ignored in later calculations due to their lack of 
engineering importance).  

                                                      
4 Note that some care is needed during this process to ensure that no problems are caused by using historical data 
that underestimates the rate of small earthquakes due to the use of less sensitive instruments in the past. Methods 
have been developed to address this issue (e.g., Weichert 1980), but are not considered further in this document.  
5 Probability tools such as cumulative distribution functions and probability density functions are necessary for 
much of the analysis that follows. See Section 4 for a review of this material. 
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where ( )MF m  denotes the cumulative distribution function for M. One can compute the probability 
density function (PDF) for M by taking the derivative of the CDF 
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where ( )Mf m  denotes the probability density function for M.  

Note that the PDF given in equation 1.3 relies on the Gutenberg-Richter law of equation 1.1, 
which theoretically predicts magnitudes with no upper limit, although physical constraints make this 
unrealistic. There is generally some limit on the upper bound of earthquake magnitudes in a region, 
due to the finite size of the source faults (earthquake magnitude is related to the area of the seismic 
rupture). If a maximum magnitude can be determined, then equation 1.2 becomes 
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and equation 1.3 becomes 
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where mmax is the maximum earthquake that a given source can produce. This limited magnitude 
distribution is termed a bounded Gutenberg-Richter recurrence law. Example observations of 
earthquake magnitudes are shown in Figure 1.6, along with Gutenberg-Richter and bounded 
Gutenberg-Richter recurrence laws fit to the data.  
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Figure 1.6: Typical distribution of observed earthquake magnitudes, along with Gutenberg-Richter 
and bounded Gutenberg-Richter recurrence laws fit to the observations.  

For our later PSHA equations, we will convert the continuous distribution of magnitudes into a 
discrete set of magnitudes. For example, consider a source with a minimum considered magnitude of 
5, a maximum magnitude of 8, and a b parameter equal to 1. Table 1.1 lists probabilities of interest for 
this example source. The first column lists 13 magnitude values between 5 and 8. The second column 
lists the cumulative distribution function, as computed using equation 1.4. The third column lists 
probabilities of occurrence of these discrete set of magnitudes, assuming that they are the only 
possible magnitudes; they are computed as follows  

 1( ) ( ) ( )j M j M jP M m F m F m+= = −  (1.6) 

where mj are the discrete set of magnitudes, ordered so that mj < mj+1. This calculation assigns the 
probabibilities associated with all magnitudes between mj and mj+1 to the discrete value mj. As long as 
the discrete magnitudes are closely spaced, the approximation will not affect numerical results. 
Magnitudes are spaced at intervals of 0.25 for illustration in Table 1.1 so that the table is not too 
lengthy, but a practical PSHA analysis might use a magnitude spacing of 0.1 or less. 
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Table 1.1: Magnitude probabilities for a source with a truncated Gutenberg-Richter distribution, a 
minimum considered magnitude of 5, a maximum magnitude of 8, and a b parameter of 1. The 
numbers in this table were computed using equations 1.4 and 1.6. 

jm  ( )M jF m  ( )jP M m=  

5.00 0.0000 0.4381 
5.25 0.4381 0.2464 
5.50 0.6845 0.1385 
5.75 0.8230 0.0779 
6.00 0.9009 0.0438 
6.25 0.9447 0.0246 
6.50 0.9693 0.0139 
6.75 0.9832 0.0078 
7.00 0.9910 0.0044 
7.25 0.9954 0.0024 
7.50 0.9978 0.0014 
7.75 0.9992 0.0008 
8.00 1.0000 0.0000 

 

 
Figure 1.7: Illustration of discretization of a continuous magnitude distribution for a source with a 
truncated Gutenberg-Richter distribution, a minimum considered magnitude of 5, a maximum 
magnitude of 8, and a b parameter of 1. (a) Continuous probability density function from equation 
1.5. (b) Discrete probabilities from equation 1.6.  

An aside: The Gutenberg-Richter models above are not the only models proposed for describing 
the distribution of earthquake magnitudes. One common alternative is the Characteristic Earthquake 
model, which proposes that some faults have repeated occurrences of a characteristic earthquake with 
a reasonably consistent magnitude (Schwartz and Coppersmith 1984). This characteristic magnitude 
occurs more often than predicted by the Gutenberg-Richter models proposed above. All that is 
required to adopt an alternative recurrence model is to replace equation 1.5 with a suitably modified 
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probability density function (e.g., Lomnitz-Adler and Lomnitz 1979; Youngs and Coppersmith 1985). 
All other PSHA equations remain identical.  

1.3.3 Identify earthquake distances 

To predict ground shaking at a site, it is also necessary to model the distribution of distances from 
earthquakes to the site of interest. For a given earthquake source, it is generally assumed that 
earthquakes will occur with equal probability at any location on the fault6. Given that locations are 
uniformly distributed, it is generally simple to identify the distribution of source-to-site distances using 
only the geometry of the source. Example calculations are shown in this section for an area source and 
a line source. 

An aside: While “distance” sounds like a well-defined term, there are in fact several definitions 
commonly used in PSHA. One can use distance to the epicenter or hypocenter, distance to the closest 
point on the rupture surface, or distance to the closest point on the surface projection of the rupture. 
Note that some distance definitions account for the depth of the rupture, while others consider only 
distance from the surface projection of the rupture. Note also that epicenter- and hypocenter-based 
definitions need only consider the location of rupture initiation; some other definitions need to 
explicitly account for the fact that ruptures occur over a plane rather than at a single point in space. 
The analyst’s choice of distance definition will depend upon the required input to the ground motion 
prediction model. Here we will consider only distance to the epicenter, for simplicity. 

1.3.3.1 Example: Area source 

Consider a site located in an area source. The source produces earthquakes randomly and with equal 
likelihood anywhere within 100 km of the site. (In actuality, the source may be larger, but is typically 
truncated at some distance beyond which earthquakes are not expected to cause damage at the site.) 
Area sources are often used in practice to account for “background” seismicity, or for earthquakes that 
are not associated with any specific fault. The example source is illustrated in Figure 1.8. 

                                                      
6 In a few special cases, analysts use non-uniform distributions for future earthquake locations based on models 
for stress transfer and time-dependent earthquake occurence. Those situations will not be considered here. 
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Figure 1.8: Illustration of an example area source.  

We can easily compute a probabilistic description for the distances to earthquakes in this case by 
noting that if the earthquakes are equally likely to occur anywhere, then the probability of an epicenter 
being located at a distance of less than r is equal to the area of a circle of radius r, divided by the area 
of the circle of radius 100 

 
2

2

2

area of circle with radius ( ) ( )
area of circle with radius 100

(100)

10,000

R
rF r P R r

r

r

π
π

= ≤ =

=

=

 (1.7) 

Equation 1.7 is only valid, however, for distance (r) values between 0 and 100 km. Accounting for 
other ranges gives the more complete description 
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We can also find the PDF for the distance by taking a derivative of the CDF 
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Plots of this PDF and CDF are shown in Figure 1.9. We see that distances close to 0 km are possible 
but unlikely, because there are few locations in the source that are associated with such small 
distances. Unlike the deterministic “worst-case” distance of 0 km, the PSHA calculations below will 
use these distributions to account for the differing probabilities of observing earthquakes at various 
distances. 

 
Figure 1.9: PDF and CDF of the source-to-site distance for future earthquakes from the example 
area source.  

1.3.3.2 Example: Line source 

Earthquake sources are also sometimes quantified as line sources7. This is particularly appropriate for 
modeling identified faults that exist on the boundary of two tectonic plates (as is the case in much of 
coastal California).  

 
Figure 1.10: Illustration of an example line source. 

                                                      
7 It is also common to treat the earth’s structure in three dimensions, meaning that faults will be represented as 
planes rather than lines. The examples in this document will all be two-dimensional for simplicity, but the 
extension to three dimensions is straightforward. 



 20

Consider a 100 km fault, modeled as a line source in Figure 1.10, with a site located 10 km from 
the center of the fault. We again assume that earthquake epicenters are equally likely at all locations. 
In this case, the probability of observing a distance of less than r is equal to the fraction of the fault 
located within a radius of r. Using the Pythagorean theorem, we can see that the distance from the 
center of the fault to a point a distance r from the site is 2 210r − .  

Using this information, we can then compute the CDF of R 
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but that equation is only true for distances of less than 10 km or greater than 51 km. Distances outside 
that range are not possible on this fault, so the complete CDF is  
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The PDF can be obtained from the derivative of the CDF 
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The PDF and CDF are plotted in Figure 1.11.  
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Figure 1.11: PDF and CDF of the source-to-site distance for future earthquakes from the example 
line source.  

These two example sources are shown to provide simple examples of distance distributions. 
Distributions for more irregular sources can also be computed in the same manner. These distributions 
are important inputs for the calculations that follow. 

1.3.4 Ground motion intensity 

We have now quantified the distribution of potential earthquake magnitudes and locations, but we are 
interested in analyzing ground motions—not earthquakes. The next step is therefore a ground motion 
prediction model8. These models predict the probability distribution of ground motion intensity, as a 
function of many predictor variables such as the earthquake’s magnitude, distance, faulting 
mechanism, the near-surface site conditions, the potential presence of directivity effects, etc. Because 
the number of predictor variables is large, we often write that the model predicts ground motion 
intensity given “magnitude, distance, etc.” 

Ground motion prediction models are generally developed using statistical regression on 
observations from large libraries of observed ground motion intensities. For example, spectral 
acceleration (SA) values at 1 second observed in the 1999 Chi-Chi, Taiwan, earthquake were shown 
previously in Figure 1.4, along with lines showing the predicted mean (and mean +/- one standard 
deviation) of the lnSA values from an example ground motion prediction model (Campbell and 
Bozorgnia 2008). That prediction model, like other modern models, was fit to thousands of observed 
intensities from dozens of past earthquakes.  

                                                      
8 These models were called “attenuation models” or “attenuation relations” until recently. Those names have 
fallen out of favor, however, because the prediction model accounts for a great number of effects, of which 
attenuation is only one.  
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 It is apparent from Figure 1.4 that there is significant scatter in observed ground motion 
intensities, even after accounting for the effect of magnitude, distance, etc. Thus, these predictive 
models must provide a probability distribution for intensities, rather than just a single intensity. This is 
important, because our later PSHA calculations need to account for the possibility of unlikely 
outcomes such as extreme intensities much larger than the predicted mean (Bommer and Abrahamson 
2006).  

To describe this probability distribution, prediction models take the following general form: 

 ln ln ( , , ) ( , , )IM IM M R M Rθ σ θ ε= + ⋅  (1.13) 

where lnIM is the natural log of the ground motion intensity measure of interest (such as spectral 
acceleration at a given period); this lnIM is modeled as a random variable, and has been seen to be 
well-represented by a normal distribution.  The terms ln ( , , )IM M R θ  and ( , , )M Rσ θ  are the outputs 
of the ground motion prediction model; they are the predicted mean and standard deviation, 
respectively, of lnIM. These terms are both functions of the earthquake’s magnitude (M), distance (R) 
and other parameters (generically referred to as θ ). Finally, ε is a standard normal random variable 
that represents the observed variability in lnIM. Positive values of ε produce larger-than-average 
values of lnIM, while negative values of ε produce smaller-than-average values of lnIM. 

Over decades of development and refinement, the prediction models for ln ( , , )IM M R θ  and 
( , , )M Rσ θ  have become complex, consisting of many terms and tables containing dozens of 

coefficients. These modern models are no longer simple to calculate using pencil and paper, so here 
we will use an older and much simpler (but obsolete) model to illustrate the example calculations. The 
approach is identical when using modern prediction models, but this simple model keeps us from 
being distracted by tedious arithmetic. 

Cornell et al. (1979) proposed the following predictive model for the mean of log peak ground 
acceleration (in units of g) 

 ln 0.152 0.859 1.803ln( 25)PGA M R= − + − +  (1.14) 

The standard deviation of lnPGA was 0.57 in this model, and was constant for all magnitudes and 
distances. The natural logarithm of PGA was seen to be normally distributed, so we can compute the 
probability of exceeding any PGA level using knowledge of this mean and standard deviation 

 
ln

ln ln( | , ) 1
PGA

x PGAP PGA x m r
σ

⎛ ⎞−
> = −Φ⎜ ⎟

⎝ ⎠
 (1.15) 

where ( )Φ  is the standard normal cumulative distribution function, as shown in Table 4.1 on page 
33. Modern prediction models also provide a mean and standard deviation to be used in equation 1.15, 
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so the general procedure is identical when using newer models; the equations for predicting the mean 
and standard deviation are just more complicated. 

Equation 1.15 used the cumulative distribution function to compute ( | , )P PGA x m r> , but 
sometimes it may be useful to use an alternate formulation incorporating the probability density 
function for PGA. Noting that the cumulative distribution function is equivalent to an integral of the 
probability density function (equation 4.25), we can also write 

 ( | , ) ( )PGA
x

P PGA x m r f u du
∞

> = ∫  (1.16) 

where ( )PGAf u  is the probability density function of PGA, given m and r. Unlike the cumulative 
distribution function ( )Φ , ( )PGAf u  can actually be written out analytically. Substituting in this PDF 
gives  

 
2

lnln

1 1 ln ln( | , ) exp
22 PGAx PGA

u PGAP PGA x m r du
σσ π

∞ ⎛ ⎞⎛ ⎞−⎜ ⎟> = − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫  (1.17) 

This integral can then be evaluated numerically within the PSHA software. 

To connect these equations to a visual display of ground motion predictions, consider Figure 1.12, 
which shows PGA predictions for a magnitude 6.5 earthquake, as a function of distance. The mean and 
the mean +/- one standard deviation of the Cornell et al. prediction is plotted for distances between 1 
and 100 km. At distances of 3, 10 and 30 km, the entire PDF of the predicted normal distribution is 
also superimposed. Suppose we were interested in the probability of PGA > 1g. At those three 
distances, equation 1.14 gives predicted means of -0.5765, -0.9788 and -1.7937, respectively9. At all 
three distances, the standard deviation of lnPGA is 0.57. So we can use equation 1.15 to compute the 
probabilities of exceedance as  

 

( )

( )

( )

ln1 ( 0.5765)( 1| 6.5,3) 1 1 1.01 0.16
0.57

ln1 ( 0.9788)( 1| 6.5,10) 1 1 1.72 0.043
0.57

ln1 ( 1.7937)( 1| 6.5,30) 1 1 3.15 0.0008
0.57

P PGA

P PGA

P PGA

− −⎛ ⎞> = −Φ = −Φ =⎜ ⎟
⎝ ⎠

− −⎛ ⎞> = −Φ = −Φ =⎜ ⎟
⎝ ⎠

− −⎛ ⎞> = −Φ = −Φ =⎜ ⎟
⎝ ⎠

 (1.18) 

                                                      
9 All of the example calculations will provide answers with more significant figures than should reasonably be 
used or reported. This is done to allow readers to reproduce the example calculations exactly, and because many 
answers are intermediate results for later calculations. 
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These probabilities correspond to the fraction of the corresponding PDFs in Figure 1.12 that are 
shaded. This visual interpretation may provide some intuition regarding the previous equations, which 
will likely be rather unfamiliar to readers who do not regularly perform probability calculations. 

 
Figure 1.12: Graphical depiction of the example ground motion prediction model for a magnitude 
6.5 earthquake, and the probability of PGA > 1g at several source-to-site distances.  

Let us consider a second example, which will provide intermediate results for some calculations 
that follow. Assume magnitude 5 earthquake has occurred at a distance of 10 km. The Cornell at al. 
ground motion prediction model provides a mean lnPGA of -2.2673, and a standard deviation of 0.57. 
The first column of Table 1.2 lists a series of PGA values of potential interest. The second column lists 
the probabilities of exceeding those PGA values, using equation 1.15. The third column lists the 
probability of equaling those PGA values, using the same discretization approach we used previously 
for the continuous magnitude distribution 

 1( ) ( ) ( )j j jP PGA x P PGA x P PGA x += = > − >  (1.19) 

Table 1.2: PGA probabilities associated with a magnitude 5 earthquake at 10 km. 

jx  ( )jP PGA x>  ( )jP PGA x=  

0.20 0.12418 0.06312 
0.25 0.06106 0.03004 
0.30 0.03102 0.01471 
0.35 0.01631 0.00745 
0.40 0.00886 0.00390 
0.45 0.00496 0.00211 
0.50 0.00285 0.00117 
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0.55 0.00168 0.00067 
0.60 0.00101 0.00039 
0.65 0.00062 0.00024 
0.70 0.00038 0.00014 
0.75 0.00024 0.00009 
0.80 0.00015 0.00006 
0.85 0.00009 0.00004 
0.90 0.00005 0.00002 
0.95 0.00003 0.00002 
1.00 0.00001 0.00001 

 

An aside: At first glance, one might wonder whether the large variability must necessarily be a 
part of prediction models, or whether it is a fundamental error caused by over-simplifications or 
inappropriate mixing of observational data. The uncertainty arises because we are trying to predict a 
highly complex phenomenon (ground shaking intensity at a site) using very simplified predictive 
parameters (magnitude, distance, and perhaps a few other parameters). Earthquake rupture is a 
complex spatial-temporal process, and here we represent it simply by “magnitude,” which measures 
the total seismic energy released in the complex rupture. Similarly, nonlinear wave scattering and 
propagation through a complex structure such as the earth is represented by simply the distance 
between the source and the site. It is true that if we had more detailed knowledge of the rupture and 
propagation process, we might predict ground shaking intensity with less uncertainty. But we don’t 
always have detailed models for rupture and wave propagation from past earthquakes to use in 
calibrating predictive models, and even if we were able to develop complex predictive models, then 
our predictions of future earthquake events would have to be much more detailed than simply 
predicting their distributions of magnitudes and distances. Ground motion prediction equations of the 
type used to produce Figure 1.4 have evolved over a period of 40 years, and are now developed using 
thousands of observed ground motions and are constrained using many theoretical and physical 
insights. This level of refinement suggests that there is little hope of this scatter being reduced 
significantly in the near future. The scatter is best thought of as an inherent variability in the 
earthquake hazard environment that must be accounted for when identifying a design ground motion 
intensity. 

1.3.5 Combine all information  

With the above information in place, we can now combine it using the PSHA equations. We will first 
consider two intermediate calculations as we build towards a PSHA equation that considers multiple 
sources.  
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First, let us compute the probability of exceeding an IM intensity level x, given occurrence of a 
future earthquake from a single source. The ground motion prediction model of Section 1.3.4 allows 
us to compute the probability of exceeding that IM level for a given magnitude and distance. The 
magnitude and distance of the future earthquake are not yet known, but we can find their probability 
distributions using Sections 1.3.2 and 1.3.3. We then combine this information using the total 
probability theorem 

 
max max

min 0

( ) ( | , ) ( ) ( )
m r

M R
m

P IM x P IM x m r f m f r dr dm> = >∫ ∫  (1.20) 

where ( | , )P IM x m r>  comes from the ground motion model, ( )Mf m  and ( )Rf r  are our PDFs for 
magnitude and distance, and we integrate over all considered magnitudes and distances10. The 
integration operation adds up the conditional probabilities of exceedance associated with all possible 
magnitudes and distances (with the PDFs weighting each conditional exceedance probability by the 
probability of occurrence of the associated magnitude and distance). 

Equation 1.20 is a probability of exceedance given and earthquake, and does not include any 
information about how often earthquakes occur on the source of interest. We can make a simple 
modification to that equation, to compute the rate of IM > x, rather than the probability of IM > x 
given occurrence of an earthquake.  

 
max max

min

min
0

( ) ( ) ( | , ) ( ) ( )
m r

M R
m

IM x M m P IM x m r f m f r dr dmλ λ> = > >∫ ∫  (1.21) 

where min( )M mλ >  is the rate of occurrence of earthquakes greater than mmin from the source, and 
( )IM xλ >  is the rate of IM > x. 

To generalize the analysis further, we would like to consider cases with more than one source. 
Recognizing that the rate of IM > x when considering all sources is simply the sum of the rates of 
IM x>  from each individual source, we can write 

 
max max

min

min
1 0

( ) ( ) ( | , ) ( ) ( )
sources

i i

m rn

i M R
i m

IM x M m P IM x m r f m f r dr dmλ λ
=

> = > >∑ ∫ ∫  (1.22) 

where nsources is the number of sources considered, and /i iM R  denote the magnitude/distance 
distributions for source i. Since we will nearly always be performing this calculation on a computer, it 

                                                      
10 More generally, we should use a joint distribution for magnitude and distance, fM,R(m,r), rather than the 
product of their marginal distances fM(m)fR(r). The above formulation is correct only if the magnitudes and 
distances of events are independent. The above formulation is helpful, however, for easily incorporating the 
magnitude and distance distributions computed earlier. 



 27

is practical to discretize our continuous distributions for M and R, and convert the integrals into 
discrete summations, as follows 

 min
1 1 1

( ) ( ) ( | , ) ( ) ( )
sources M Rn n n

i j k i j i k
i j k

IM x M m P IM x m r P M m P R rλ λ
= = =

> = > > = =∑ ∑∑  (1.23) 

where the range of possible Mi and Ri have been discretized into nM and nR intervals, respectively, 
using the discretization technique discussed earlier.  

Equation 1.22 (or, equivalently, 1.23) is the equation most commonly associated with PSHA. It 
has integrated our knowledge about rates of occurrence of earthquakes, the possible magnitudes and 
distances of those earthquakes, and the distribution of ground shaking intensity due to those 
earthquakes. Each of those inputs can be determined through scientific studies of past earthquakes and 
processing of observed data. The end result—the rate of exceeding IM levels of varying intensity—is 
very useful for engineering decision making, and can be determined even for rare (low exceedance-
rate) intensities that are not possible to determine through direct observation. In the next section, we 
will perform some example calculations to demonstrate how this equation is used in practice. 

1.4 Example PSHA calculations 

To illustrate the procedure described in the previous section, several numerical examples will be 
performed below, starting from basic calculations and building to more complex cases. These 
examples will compute rates of exceeding varying levels of Peak Ground Acceleration, using the 
procedures described above. 

1.4.1.1 Example: a source with a single magnitude and distance 

  
Figure 1.13: Map view of the example site, with one earthquake source. 

We first start with a simple site shown in Figure 1.13. There is a single fault (Fault A) that 
produces only magnitude 6.5 earthquakes. We assume that this earthquake will rupture the entire fault, 
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so that the source-to-site distance is exactly 10 km in every case (that is, we will not consider random 
locations). Assume also that earthquakes with this magnitude and distance occur at a rate of λ = 0.01 
times per year. Although the magnitudes and distances of all future earthquakes are fixed at 6.5 and 10 
km, respectively, we still expect variations in observed peak ground accelerations at the site, due to 
differences from event to event that are not captured by our simple measures of magnitude and 
distance. 

Using the Cornell et al. model presented in equation 1.14, we predict a median PGA of 0.3758g 
(i.e., a mean lnPGA of -0.979), and log standard deviation of 0.57. We can easily compute that the 
probability of exceeding 0.3758g given an earthquake is 0.5, since this is the median predicted value. 
The annual rate of exceeding 0.3758g is thus 0.5 * 0.01 = 0.005 per year. This quick calculation is 
done to develop intuition regarding the calculations, but we can also use the more formal equations 
presented above. When considering equation 1.23, we see that ( 6.5) 1P M = = , ( 10) 1P R = =  and 

min( ) 0.01iM mλ > = . There is only one magnitude, distance and source to consider, so all of the 
summations are replaced by a single term. We thus have  

 min( ) ( ) ( | 6.5,10) ( 6.5) ( 10)
0.01 ( | 6.5,10)

PGA x M m P PGA x P M P R
P PGA x

λ λ> = > > = =
= >

 (1.24) 

Next, since we know the mean and standard deviation of lnPGA, we can compute the probability 
of exceeding a given PGA value using equation 1.15 

 
ln

ln ln ln ln(0.3758)( | 6.5,10) 1 1
0.57PGA

x PGA xP PGA x
σ

⎛ ⎞− −⎛ ⎞> = −Φ = −Φ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 (1.25) 

We can use Table 4.1 to evaluate the standard normal cumulative distribution function ( )Φ . For 
example, the probability of PGA > 1g is  

 ( )( 1 | 6.5,10) 1 1.72 0.044P PGA g> = −Φ =  (1.26) 

Substituting this into equation 1.24, we can find the annual rate of exceeding 1g 

 ( 1 ) 0.01 ( 1 | 6.5,10) 0.00044PGA g P PGA gλ > = > =  (1.27) 

By repeating these calculations for many PGA levels, one can construct the curve shown in Figure 
1.14. This “ground motion hazard curve” for PGA summarizes the rates of exceeding a variety of PGA 
levels. The two calculations performed explicitly above (for PGA > 0.3758g and PGA > 1g) are 
labeled on this figure as well. Note that because both axes often cover several orders of magnitude, 
and the y axis contains very small values, one or both axes of ground motion hazard curves are often 
plotted in log scale.  
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Figure 1.14: PGA hazard curve for the single-source site.  

This example demonstrates the essence of a PSHA calculation. All that remains to perform a more 
realistic calculation is to consider a range of feasible magnitudes and distances, rather than just the 
single event in this hypothetical example. 

1.4.1.2 Example: two magnitudes and distances 

Before moving to an example with a continuous range of magnitudes, let us first try another 
hypothetical example with only two possible magnitude/distance combinations. The first source, 
“Fault A,” is identical to the source in the immediately preceding example. The second source, “Fault 
B,” produces only magnitude 7.5 earthquakes at a distance of 20 km. The earthquake on Fault B 
occurs at a rate of λ = 0.002 times per year. The map of this example site is shown in Figure 1.15. We 
will continue using the Cornell et al. model presented in equation 1.14 to predict PGA at the site. 
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Figure 1.15: Map view of an example site with two earthquake sources.  

The previous example to quantified the hazard from Fault A, so let us focus on calculating the 
hazard from Fault B. Using the Cornell et al. ground motion model, we predict a median PGA of 
0.5639g if the earthquake on Fault B occurs, and a log standard deviation of 0.57. Now consider the 
two PGA values considered in the previous example. The probability of PGA > 0.3758g, given an 
earthquake on Fault B, is  

 ( )ln(0.3758) ln(0.5639)( 0.3758 | 7.5,20) 1 1 0.71 0.761
0.57

P PGA g −⎛ ⎞> = −Φ = −Φ − =⎜ ⎟
⎝ ⎠

 (1.28) 

We can then multiply this probability by the rate of occurrence of earthquakes on Fault B (0.02), to get 
the rate of PGA > 0.3758g due to earthquakes on Fault B. But the PSHA formula of equation 1.23 
includes a summation over all sources, so we add these probabilities to the corresponding probabilities 
for Fault A to find the overall rate of PGA > 0.3758g 

 

(Fault A) (Fault B)

( 0.3758 ) 0.01 ( 0.3758 | 6.5,10) 0.002 ( 0.3758 | 7.5,20)
0.01(0.5) 0.002(0.761)
0.00500 0.00152
0.00652

PGA g P PGA P PGAλ > = > + >
= +
= +
=


������������ 
������������

 (1.29) 

Similarly, we can compute the probability of PGA > 1g, given an earthquake on Fault B 

 ( )ln(1) ln(0.5639)( 1 | 7.5,20) 1 1 1.01 0.158
0.57

P PGA g −⎛ ⎞> = −Φ = −Φ =⎜ ⎟
⎝ ⎠

 (1.30) 

and then combine this with our other known information to compute the overall rate of PGA > 1g 
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(Fault A) (Fault B)

( 1 ) 0.01 ( 1| 6.5,10) 0.002 ( 1| 7.5,20)
0.01(0.043) 0.002(0.158)
0.000430 0.000316
0.000746

PGA g P PGA P PGAλ > = > + >
= +
= +
=


���������� 
����������

 (1.31) 

The two rates computed above are plotted in Figure 1.16, along with rates for all other PGA levels. 
Also shown in Figure 1.16 are curves showing the rates of exceedance for the two individual faults. 
The intermediate rate calculations shown above (0.005 and 0.00152 for PGA>0.3758g, and 0.0043 and 
0.00316 for PGA>1g) are also noted with circles on Figure 1.16 for reference. A few observations can 
be made regarding this figure and its associated calculations. First, note that the hazard curve for Fault 
A in the figure is identical to the curve in Figure 1.14. We have simply added the additional rates of 
exceedance due to Fault B in order to get the total hazard curve shown in Figure 1.16. Second, we can 
note that the relative contributions of the two faults to the ground motion hazard vary depending upon 
the PGA level of interest. At relatively lower PGA values such as in the calculation of equation 1.29, 
Fault A contributes much more to the overall rate of exceedance. This is because it has a higher rate of 
earthquakes. At larger PGA levels such as in the calculation of equation 1.31, the relative contributions 
of the two faults are close to equal; this is because the smaller-magnitude earthquakes from Fault A 
have a low probability of causing high PGA values, even thought they are more frequent than the 
larger-magnitude earthquakes from Fault B. We see in Figure 1.16 that for PGA values greater than 
about 1.5g, Fault B actually makes a greater contribution to the hazard than Fault A, even though its 
rate of producing earthquakes is only 1/5 of Fault A’s. This is a typical situation for real-life PSHA 
calculations as well: low-intensity shaking is generally dominated by frequent small earthquakes, 
while high-intensity shaking is caused primarily by large-magnitude rare earthquakes. 
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Figure 1.16: PGA hazard curve for the example two-source site.  

1.4.1.3 Example: point source with Gutenberg-Richter magnitudes 

In this example we will now consider a source that is capable of producing earthquakes with a 
variety of magnitudes. The source produces events with M ≥ 5 at a rate of 0.02 events per year. The 
distribution of those earthquakes follows the bounded Gutenberg-Richter model, with a maximum 
magnitude of 8 and “b” value of 1 (the b parameter in equation 1.5). We will thus use equation 1.5 to 
describe the PDF of earthquake magnitudes, with mmin = 5 and mmax = 8. We again assume that all 
earthquakes occur at the same distance of 10 km, so that we can simplify the PSHA summations.  

 
Figure 1.17: Map view of an example site with one source producing earthquakes having a variety 
of magnitudes.  
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We will use equation 1.23 to perform the PSHA calculation for peak ground acceleration, using 
the Cornell et al. ground motion model from the previous examples. Noting that there is only one 
source and one distance, and substituting ( 10) 1P R = =  and min( ) 0.02iM mλ > = , we get 

 
1

( ) 0.02 ( | ,10) ( )
Mn

j j
j

PGA x P PGA x m P M mλ
=

> = > =∑  (1.32) 

To compute this rate of exceeding some PGA level, we simply need to compute the probabilities of 
observing various earthquake magnitudes, compute the probabilities of exceeding our PGA level given 
those magnitudes, and then sum the product of those two terms evaluated for the range of feasible 
magnitudes. Table 1.3 shows those probabilities for calculations of ( 0.2 )PGA gλ > . The first column 
lists the discrete set of magnitudes considered (a magnitude increment of 0.25 has been used). The 
second column lists the probabilities of observing those magnitudes, as computed using equation 1.6 
(note these probabilities are identical to those in Table 1.1, because the assumed magnitude 
distribution is the same). The third column lists the probability of PGA > 0.2g, given occurrence of an 
earthquake having the specified magnitude. This is computed, as was done in the earlier examples, by 
evaluating the Cornell et al. ground motion model using each magnitude value. The fourth column 
lists the products of the second and third columns. We see that equation 1.32 is simply a summation of 
the terms in the fourth column, multiplied by the rate of occurrence of earthquakes. The sum of the 
fourth column is 0.269, so the rate of PGA>0.2g at the site of interest is 

( 0.2) 0.02(0.269) 0.0054PGAλ > = = .  

Table 1.3: Probabilities used to compute λ(PGA>0.2g). 

jm  ( )jP M m=  
 

( 0.2 | ,10)jP PGA m>

( 0.2 | ,10)

  ( )
j

j

P PGA m

P M m

>

⋅ =
 

5.00 0.4381 0.1242 0.0544 
5.25 0.2464 0.2185 0.0538 
5.50 0.1385 0.3443 0.0477 
5.75 0.0779 0.4905 0.0382 
6.00 0.0438 0.6379 0.0279 
6.25 0.0246 0.7672 0.0189 
6.50 0.0139 0.8657 0.0120 
6.75 0.0078 0.9310 0.0073 
7.00 0.0044 0.9686 0.0042 
7.25 0.0025 0.9873 0.0024 
7.50 0.0014 0.9955 0.0014 
7.75 0.0008 0.9986 0.0008 

  Sum = 0.269 
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We continue the hazard analysis by repeating the calculations of Table 1.3 for more PGA values. 
In Table 1.4, the same calculation is repeated for PGA > 1g. Here we see that the summation of the 
right-hand column is 0.0048, so the rate of PGA > 1g at the site of interest is 

5( 1) 0.02(0.0048) 9.6 10PGAλ −> = = ⋅ .  

Table 1.4: Probabilities used to compute λ(PGA>1g). 

jm  ( )jP M m=  ( 1| ,10)jP PGA m>  

( 1| ,10)

  ( )
j

j

P PGA m

P M m

>

⋅ =
 

5.00 0.4381 0.0000 0.0000 
5.25 0.2464 0.0002 0.0000 
5.50 0.1385 0.0006 0.0001 
5.75 0.0779 0.0022 0.0002 
6.00 0.0438 0.0067 0.0003 
6.25 0.0246 0.0181 0.0004 
6.50 0.0139 0.0430 0.0006 
6.75 0.0078 0.0901 0.0007 
7.00 0.0044 0.1676 0.0007 
7.25 0.0025 0.2786 0.0007 
7.50 0.0014 0.4168 0.0006 
7.75 0.0008 0.5662 0.0004 

   Sum = 0.0048 
 

By repeating this calculation for many more PGA values, we can create the ground motion hazard 
curve shown in Figure 1.18. The two individual rates of exceedance calculated above are labeled on 
this curve. 
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Figure 1.18: PGA hazard curve for the example site with one source and a Gutenberg-Richter 
magnitude distribution.  

Comparing Table 1.3 to Table 1.4, we can make several observations. The first two columns of 
both tables are identical, as they are only describing the earthquake magnitudes and so are not affected 
by changes in the PGA level of interest. We see that all probabilities in the third column are much 
larger in Table 1.3 than in Table 1.4: the PGA threshold was lower in Table 1.3, so the probability of 
exceeding the threshold is therefore higher.  

In Table 1.4, the probability of PGA > 1g is equal to zero for the smallest magnitude considered. 
This means that considering even smaller magnitudes would have no impact on our final answer, 
because smaller magnitude earthquakes have effectively zero probability of causing a PGA greater 
than 1g. In Table 1.3, however, we see that even magnitude 5 earthquakes have a non-zero probability 
of causing PGA > 0.1g; this is somewhat worrisome because lower magnitude earthquakes could also 
cause PGA > 0.1g, so including them would have changed our answer. This suggests that the choice of 
the minimum considered earthquake can be important in some cases. We will return to this issue in 
Section 2.2. 

By looking at the right-hand column of these tables, we can also identify the magnitudes that make 
the greatest contribution to the probability of exceeding the PGA level of interest. Each number in this 
column is a product of the probability of occurrence of some magnitude and the probability of 
exceedance of the PGA given that magnitude, which is equal to the probability of both events 
occurring (given that an earthquake has occurred). In Table 1.3, we see that the probabilities are 
largest for the small magnitudes; this is because small-magnitude earthquakes are much more likely to 
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occur than large-magnitude earthquakes (as seen in column 2), and because these small-magnitude 
earthquakes have a reasonable probability of causing PGA > 0.1g. In Table 1.4, on the other hand, 
these small magnitude earthquakes have very small probabilities in the fourth column because they 
have a very small probability of causing PGA > 1g. In Table 1.4, the moderate- to large-magnitude 
earthquakes have the highest probabilities in the fourth column, because even though they are 
relatively rare, they are the only ones with significant probabilities of causing PGA > 1g. Intuitively, 
we can imagine that this information would be useful for identifying the earthquake scenarios most 
likely to damage a structure at the site of interest. We will revisit this information in a more 
quantitative manner in Section 2.1 below. 

For more complex sites than the simple cases shown in the above examples, the PSHA 
summations can quickly get lengthy. For this reason, PSHA is performed using computer software in 
all practical analysis cases. The software’s purpose is to perform the calculations shown here, but for 
more complicated cases involving many earthquake sources, while also using modern ground motion 
prediction models that are much more complex than the one used here. Note that in the example above 
we used a relatively wide magnitude spacing of 0.25 units in our discretization in order to keep the 
length of Table 1.3 reasonably short. When performing these calculations in a computer program, it is 
also easy to use a fine discretization of the magnitudes and distances of interest.  
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Section 2  Extensions of PSHA 

 

 

 

The PSHA inputs and primary PSHA calculations were described in the previous section. To fully 
utilize the information provided by those calculations, several extensions are often used. These 
extensions are described in the following sections. 

2.1 Deaggregation 

One of the primary advantages of PSHA—that it accounts for all possible earthquake sources in an 
area when computing seismic hazard—is also a disadvantage. Once the PSHA computations are 
complete, a natural question to ask is “which earthquake scenario is most likely to cause PGA>x?” 
Because we have aggregated all scenarios together in the PSHA calculations, the answer is not 
immediately obvious. We saw in the example calculations above, however, that some of the 
intermediate calculation results indicated the relative contribution of different earthquake sources and 
magnitudes to the rate of exceedance of a given ground motion intensity. Here we will formalize those 
calculations, through a process known as deaggregation1 (Bazzurro and Cornell 1999; McGuire 1995).  

Let us start with magnitude deaggregation. In this case, we are interested in the probability that an 
earthquake’s magnitude is equal to m, given that a ground motion of IM > x has occurred. Intuitively, 
this is equal to the rate of earthquakes with IM > x and M = m, divided by the rate of all earthquakes 
with IM > x 

 ( , )( | )
( )

IM x M mP M m IM x
IM x

λ
λ
> =

= > =
>

 (2.1) 

This relationship can also be derived more rigorously, as an application of Bayes’ rule. The 
denominator of this equation is exactly what we have computed previously in equation 1.23 (i.e., our 
primary PSHA equation). The numerator is very similar, except that it specifies occurrence of a given 
causal magnitude, rather than integrating over all magnitudes as we did in the previous PSHA 
equations. To compute this numerator, we simply omit the summation over M from equation 1.23 

                                                      
1 The calculations shown in this section are known as both “deaggregation” and “disaggregation.” No universal 
terminology has yet been adopted. Disaggregation is the only one of the two words that is found in a dictionary, 
but deaggregation is probably used more often. 
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 min
1 1

( , ) ( ) ( | , ) ( ) ( )
Rsources inn

i k i i k
i k

IM x M m M m P IM x m r P M m P R rλ λ
= =

> = = > > = =∑ ∑  (2.2) 

Example 1 

To illustrate, let us consider again the example of Section 1.4.1.2. This site had two sources, and we 
might be interested in the relative contributions of the two sources to exceedance of a given intensity 
level. Consider first the case PGA > 0.3758g, since we have previously computed some needed 
probabilities for that PGA value. Looking at equation 1.29 from that example, we can see that  

 
( 0.3758 , 6.5) 0.01 ( 0.3758 | 6.5,10)

0.005
PGA g M P PGAλ > = = >

=
 (2.3) 

 
( 0.3758 , 7.5) 0.002 ( 0.3758 | 7.5,20)

0.00152
PGA g M P PGAλ > = = >

=
 (2.4) 

 ( 0.3758 ) 0.00652PGA gλ > =  (2.5) 

Plugging those three numbers into equation 2.1 gives ( 6.5 | 0.3758 ) 0.77P M PGA g= > =  and 
( 7.5 | 0.3758 ) 0.23P M PGA g= > = . Repeating the same calculations using the results of equation 

1.31 gives ( 6.5 | 1 ) 0.58P M PGA g= > =  and ( 7.5 | 1 ) 0.42P M PGA g= > = . So we see, for the 
relatively lower PGA value of 0.3758g, that the smaller and more active fault has a high probability of 
being the causal fault. At the larger PGA intensity of 1g, the less active but larger fault makes a greater 
contribution to exceedance of the PGA. This is consistent with the qualitative observations made at the 
end of the original example calculation. And note that these quantitative calculations are actually very 
simple. The probabilities we have computed are exactly proportional to the rates we previously 
computed for ( , )IM x M mλ > = ; all we have done here is normalize those rates to get probabilities 
that sum to one. 

Example 2 

Let us consider the example of Section 1.4.1.3 as a slightly more realistic application of 
deaggregation. This site had a single source producing earthquake magnitudes with a Gutenberg-
Richter distribution. We can use deaggregation to find the probability that some PGA level was 
exceeded by an earthquake with a given magnitude. Let us first consider PGA values greater than 0.2g. 
Referring to equation 2.1, we see that we have previously computed ( 0.2) 0.0054PGAλ > = . Further, 
since this site has only a single source and a single distance, equation 2.2 simplifies to 

 min( , ) ( ) ( | ,10) ( )IM x M m M m P IM x m P M mλ λ> = = > > =  (2.6) 

For this example, min( ) 0.02M mλ > = , and the remaining two terms are provided in Table 1.3 (in fact, 
their product is given in the far right column). So we see that all of the needed inputs for a 
deaggregation calculation are already computed as part of the basic PSHA calculation. To demonstrate 
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this calculation, let us find the probability of a PGA > 0.2g ground motion being caused by a 
magnitude 5 earthquake.  

 ( 0.2, 5) 0.02(0.4381)(0.1242)( 5 | 0.2) 0.20
( 0.2) 0.0054

PGA MP M PGA
PGA

λ
λ

> =
= > = = =

>
 (2.7) 

This deaggregation data is computed for other magnitudes and summarized in Table 2.1. The first two 
columns list magnitudes of interest and their probabilities of occurrence in this example (and are 
identical to the probabilities computed earlier in Table 1.1). The third column shows the probability of 

0.2PGA >  associated with each of the magnitudes. The fourth column shows ( 0.2, )jPGA M mλ > = , 
computed using equation 2.2 and noting that min( ) 0.02iM mλ > =  for this problem. The fifth column 
shows the deaggregation probability, computed using equation 2.1, and noting that 

( 0.2) 0.0054PGAλ > = . 

Table 2.1: Probabilities related to the deaggregation calculations for the example calculation of 
Section 1.4.1.3.  

jm
 

( )jP M m=
 

( 0.2 | ,10)P PGA m> ( 0.2, )jPGA M mλ > = ( | 0.2)jP M m PGA= >

5.00 0.4381 0.1242 0.0011 0.2022 
5.25 0.2464 0.2185 0.0011 0.2000 
5.50 0.1385 0.3443 0.0010 0.1773 
5.75 0.0779 0.4905 0.0008 0.1420 
6.00 0.0438 0.6379 0.0006 0.1039 
6.25 0.0246 0.7672 0.0004 0.0702 
6.50 0.0139 0.8657 0.0002 0.0446 
6.75 0.0078 0.9310 0.0001 0.0270 
7.00 0.0044 0.9686 0.0001 0.0158 
7.25 0.0025 0.9873 0.0000 0.0090 
7.50 0.0014 0.9955 0.0000 0.0051 
7.75 0.0008 0.9986 0.0000 0.0029 
8.00 0.0000 0.9996 0.0000 0.0000 

 

The deaggregation values shown in the fifth column of Table 2.1 are plotted in Figure 2.1a. We easily 
see in this figure that small-magnitude events have the highest probability of causing PGA > 0.2g 
ground motions, matching the intuitive observations that were made during that example calculation. 
Figure 2.1b shows the same deaggregation plot, but conditioned on PGA > 1g. We see that large-
magnitude events have the highest probability of causing exceedance of this large amplitude, because 
the frequent small events have a very low probability of causing such a large amplitude. 
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Figure 2.1: Deaggregation results associated with the example calculation of Section 1.4.1.3. (a) 
Magnitude distribution, given PGA > 0.2g. (b) Magnitude distribution, given PGA > 1g.  

We see in Figure 2.1 that the deaggregation results vary as the intensity level of interest changes. 
The deaggregation results will also vary if one studies a different measure of ground motion intensity. 
That is, the events that cause extreme PGA levels will differ from the events that cause extreme 
spectral acceleration levels at long periods. Our intuition in this respect may benefit from reviewing 
Figure 1.1b, which shows the median response spectra from two different earthquake events. In that 
figure, the large-magnitude event produces larger spectral acceleration values at long periods, while 
the small-magnitude nearby event produces larger spectral acceleration values at short periods. This 
will intuitively lead to different events dominating the deaggregation results at those associated 
periods, and that is what we see in practice with real sites as well. Thus, deaggregation helps us see 
that there is no single earthquake event that is the design earthquake for every situation at a given site. 
The earthquake of interest will depend upon the ground motion intensity measure of interest, as well 
as the intensity level of interest. 

The results shown in Figure 2.1 were computed using the same magnitude bins as were used for 
the original PSHA calculations, so that we did not have to re-compute as many probabilities. But this 
is not representative of common practice in real calculations. A typical PSHA calculation will use a 
finer magnitude discretization for the basic PSHA summation (perhaps a 0.1 magnitude interval), and 
a much coarser discretization for the deaggregation computations (perhaps a 0.5 magnitude interval). 
This is because the original summation is never output, and so can be finely discretized to maximize 
accuracy. The deaggregation output, however, is often presented in tabular form, and so is more 
coarsely discretized to minimize the length of output tables. Keep in mind that here we are 
deaggregating on only magnitude, but when deaggregating to find the probabilities of combinations of 
various magnitudes, distances, etc., the output can quickly become much lengthier. To illustrate the 
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use of a more coarse discretization, and to provide data that will be used later, Table 2.2 and Figure 2.3 
show results identical to Table 2.1 and Figure 2.1, but with a coarser discretization of magnitudes, into 
intervals of width 0.5. The only change needed to produce these calculations is to modify the 

( )jP M m=  calculation to account for the fact that a larger interval of magnitudes is being assigned to 
each discrete magnitude.  By comparing Figure 2.1 and Figure 2.3, we see that the locations and 
shapes of these magnitude distributions are still clear using the coarser discretization. For qualitative 
evaluations of causal earthquakes, coarse discretizations are thus useful. For quantitative calculations 
that use these results, it is important to consider potential errors caused by coarsely discretizing the 
deaggregation results. 

Table 2.2: Probabilities related to the deaggregation calculations for the example calculation of 
Section 1.4.1.3, with magnitudes discretized into 0.5-unit intervals. 

jm
 

( )jP M m=
 

( 0.2 | ,10)P PGA m> ( 0.2, )jPGA M mλ > = ( | 0.2)jP M m PGA= >

5.0 0.6845     0.1242 0.0017 0.3685 
5.5 0.2164     0.3443 0.0015 0.3230 
6.0 0.0684     0.6379 0.0009 0.1892 
6.5 0.0216     0.8657 0.0004 0.0812 
7.0 0.0068     0.9686 0.0001 0.0287 
7.5 0.0022     0.9955 0.0000 0.0093 
8.0 0.0000     0.9996 0.0000 0.0000 

 

 
Figure 2.2: Deaggregation results associated with the example calculation of Section 1.4.1.3, with 
magnitudes discretized into 0.5-unit intervals. (a) Magnitude distribution, given PGA > 0.2g. (b) 
Magnitude distribution, given PGA > 1g.  

The above deaggregation results focus solely on the conditional distribution of magnitude. The 
same calculation can be done to find the conditional distribution of distance, by simply modifying 
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equation 2.2 to have a summation over magnitudes but not over distances. One can also find the 
conditional joint distribution of magnitudes and distances, using the following equation 

 ( , , )( , | )
( )

IM x M m R rP M m R r IM x
IM x

λ
λ
> = =

= = > =
>

 (2.8) 

where the numerator of equation 2.8 is computed using the basic PSHA equation but not summing 
over either M or R 

 min
1

( , , ) ( ) ( | , ) ( ) ( )
sourcesn

i j k i i
i

IM x M m R r M m P IM x m r P M m P R rλ λ
=

> = = = > > = =∑  (2.9) 

An example of this conditional distribution of M and R given IM > x is shown in Figure 2.3.  

These deaggregation calculations are a critical part of many PSHA analyses, and deaggregation 
results should be provided as part of the output from any PSHA calculation. The U.S. Geological 
Survey, which performs PSHA for the United States that is incorporated into building codes, provides 
deaggregation results alongside the basic PSHA output (http://earthquake.usgs.gov/hazmaps/). An 
example is shown on Figure 2.3 for a site in Los Angeles.  

 
Figure 2.3: Example disaggregation for SA(1.0s) at a site in Los Angeles (USGS 2002). 
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2.2 Impact of bounds on considered magnitudes and distances 

For practical reasons, not all earthquake magnitudes are considered in PSHA calculations. 
Typically, only earthquakes with magnitudes greater than approximately 4.5 or 5 are considered. This 
is chosen as a conservative value, for which the omitted small-magnitude earthquakes are not believed 
to be capable of damaging structures, and thus not relevant for seismic risk calculations. This also 
reduces the size of the calculations. The exact magnitude at which an earthquake is no longer 
damaging is not obvious, however, and unfortunately the choice of cutoff magnitude can significantly 
affect some PSHA results.  

To illustrate, let us consider again the example calculation from Section 1.4.1.3. In this example, 
there was a point source that produced magnitudes having a truncated Gutenberg-Richter distribution. 
In the original calculation, we assumed a minimum magnitude of 5.0. But what would happen to our 
results if we chose a different minimum magnitude? Figure 2.4 shows the hazard curves for that site 
using three choices of minimum magnitude2. The case with mmin = 5.0 is identical to the result shown 
in Figure 1.18. We see that the exceedance rates for small PGA values vary dramatically, but the rate 
exceedance rates for large PGA values are nearly identical. This is not surprising, given the 
deaggregation results of Figure 2.1. In Figure 2.1b, we see that small earthquakes make almost no 
contribution to exceedances of 1g, so the minimum considered magnitude will not impact that 
calculation. In Figure 2.1a, on the other hand, we see that small magnitude earthquakes make a 
significant contribution to exceedances of 0.2g.  Thus, while it might be conceptually reasonable to 
omit non-damaging small-magnitude earthquakes from the PSHA calculation, it is also clear that the 
results may be sensitive to the actual choice of minimum magnitude.  

An aside: There is typically a restriction placed on the maximum considered distance in equation 
1.22 as well. That choice typically has no significant impact on the PSHA results, however, as long as 
the maximum distance is several hundred kilometers. The choice of maximum distance will not be 
considered further here. 

                                                      
2 The calculations to produce the three ground motion hazard curves are identical to those used in section 1.4.1.3. 
The only changes needed are to adjust mmin, and to adjust the corresponding rate of occurrence of M > mmin. The 
appropriate rate of occurrence was found by using equation 1.1 to find the a value that gives the specified rate of 
M > 5, and then using that a value to solve for the rate of M > mmin using the alternate mmin choices.  
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Figure 2.4: Hazard curves computed for the example site from Section 1.4.1.3, using several 
choices for the minimum considered magnitude. 

2.3 Probabilities, rates, and return periods 

The text above has focused only on rates of exceeding a given ground motion intensity. Sometimes, 
PSHA results are also formulated in terms of probabilities or return periods of exceedance. The return 
period is defined as the reciprocal of the rate of occurrence. For example, if a given ground motion 
intensity has a 0.01 annual rate of occurrence, then the return period is equal to 1/0.01=100 years. This 
does not imply that the ground motion will be exceeded exactly once every 100 years, but rather that 
the average (or mean) time between exceedances is 100 years. For this reason, the reciprocal of the 
exceedance rate is more precisely termed the mean return period. While “mean return period” or 
simply “return period” are commonly used names used to refer to the reciprocal of the rate of 
occurrence, one may avoid some confusion regarding the implied time between exceedances by 
simply reporting rates rather than return periods.  

For a given rate of exceedance, one can also compute a probability of exceeding a given ground 
motion intensity within a given window of time. This calculation requires further information 
regarding the probability distribution of time between occurrences of earthquakes. This distribution is 
nearly always assumed to be “Poissonian,” for three reasons: it results in simple mathematical 
equations, it appears to match observations in most cases, and more complicated models typically do 
not impact the final results significantly. The Poisson model assumes that occurrences of earthquakes 
are independent in time (that is, the probability of an earthquake in a window of time is related only to 
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the size of the window, and is independent of anything such as the time since the most recent 
occurrence), and that the probability of more than one occurrence in a very short interval is negligible. 
Under the assumption of Poissonian occurrences, the probability of observing at least one event in a 
period of time t is equal to 

 (at least one event in time ) 1 tP t e λ−= −  (2.10) 

where λ is the rate of occurrence of events. A plot of this relationship is shown in Figure 2.5. 

 
Figure 2.5: Probability of occurrence of an event in time t, as a function of the expected number of 
occurrences, λt.  

If λt is small (less than approximately 0.1), then the probability can also be approximated by 

 (at least one event in time ) 1 tP t e tλ λ−= − ≅  (2.11) 

This approximation comes from taking the first term of a Taylor series expansion of 1-e-λt. The 
accuracy of the approximation can be seen in Figure 2.5, where the plot follows a straight line with a 
slope of 1 for λt values less than 0.1. 

Using the above calculations, PSHA results are converted between rates of exceedance, 
probabilities of exceedance, and return periods. There are two important caveats to these conversions 
that should be kept in mind: 

1. The conversion between rates of exceedance and probabilities of exceedance is almost 
always made by assuming a Poissonian occurrence of earthquakes (whether or not this 
has been stated explicitly by the analyst).  
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2. Probabilities of exceedance and rates of exceedance are only equivalent if the 
probability level of interest is small (i.e., less than 0.1). 

An Aside: Many proposals have been made to predict the recurrence of earthquakes using models 
other than the Poisson model (e.g., Anagnos and Kiremidjian 1984). One summary of the sensitivity of 
computed probabilities to the choice of earthquake recurrence model is given by Cornell and 
Winterstein (1988), who also describe some alternative recurrence models. Cornell and Winterstein 
found that the Poisson model is accurate for PSHA unless the seismic hazard is dominated by a single 
source, the time since that source’s last event is greater than the average time between events, and the 
source has strong “characteristic time” behavior.  

2.4 Summarizing PSHA output: the uniform hazard spectrum 

A common goal of probabilistic seismic hazard analysis is to identify a design response spectrum to 
use for structural or geotechnical analysis. One approach for developing a spectrum is to compute a 
uniform hazard spectrum (UHS). This spectrum is developed by first performing the above PSHA 
calculations for spectral accelerations at a range of periods. Then, a target rate of exceedance is 
chosen, and for each period the spectral acceleration amplitude corresponding to that rate is identified. 
Those spectral acceleration amplitudes are then plotted versus their periods, as illustrated in Figure 
2.6. 

This spectrum is called a uniform hazard spectrum because every ordinate has an equal rate of 
being exceeded. But it should be clear that this spectrum is an envelope of separate spectral 
acceleration values at different periods, each of which may have come from a different earthquake 
event3. This mixing of events to create a spectrum has sometimes been used to criticize the entire 
PSHA procedure. But it is important to recognize that a UHS is merely one way to use the output of 
PSHA. None of the calculations prior to this section required the use of a UHS, and it is quite possible 
to productively use PSHA results without ever computing a UHS. In fact, the Nuclear Regulatory 
Commission (1997) relies on the deaggregation results discussed earlier to identify scenario 
magnitudes and distances and then computes a design spectral shape based on those magnitudes and 
distances. In that procedure, no uniform hazard spectrum is needed.  

Some other design procedures (e.g., for design of buildings) use the UHS, but in those cases one 
can simply remember the manner in which a UHS is computed in order to avoid misinterpreting the 
results as the spectrum from some single ground motion. Although the uniform hazard spectrum is not 
                                                      
3 For example, consider Figure 1.2b as an illustration of a case where high-frequency ground motions may be 
caused by one source, and low frequency ground motions by another. Even in the case where there is only a 
single source, it is not necessary for extreme (i.e., larger-than-median) ground motion amplitudes to occur 
simultaneously in the same ground motion.  
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required for PSHA calculations, it is a commonly-used procedure. It is also a good example of the 
various ways in which PSHA calculations can be adopted for various uses. For these reasons, it 
warrants at least a brief mention in any summary of PSHA.  

 
Figure 2.6: Combining hazard curves from individual periods to generate a uniform hazard 
spectrum with a 4*10-4 rate of exceedance for a site in Los Angeles. (a) Hazard curve for SA(0.3s), 
with UHS point identified. (b) Hazard curve for SA(1s), with UHS point identified. (c) Uniform 
hazard spectrum, based on a series of calculations like those in (a) and (b). 

2.5 Joint distributions of two intensity measures4 

While the uniform hazard spectrum calculation of the previous Section provides one way of 
combining multiple ground motion intensity measures, it is not probabilistically rigorous (i.e., it does 
not compute the probability of simultaneous occurrence these parameters). But it is possible to account 
for joint predictions, and some of the necessary tools are discussed briefly here.  

                                                      
4 This optional section may be omitted. 
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Logarithms of pairs of spectral acceleration values (and presumably also PGA values) have been 
shown to have a joint normal distribution (Jayaram and Baker 2007), so calculations of joint 
distributions of two intensity measures becomes reasonably simple in this special case. In the case of a 
joint normal distribution, conditional distributions of one intensity measure parameter, given the other, 
are also normally distributed, and can be computed using only a linear correlation coefficient between 
the two parameters (see Section 4.3 for a few further details, and Benjamin and Cornell, 1970, for a 
more complete discussion). 

Let us consider joint predictions of PGA and spectral acceleration at a period of 0.5 seconds 
(SA(0.5s)), given a magnitude 5 earthquake at a distance of 10 km. Abrahamson and Silva (1997) 
provide the following predictions for the mean and standard deviation of lnSA 

 ln 2.7207SA = −  (2.12) 

 ln 0.80SAσ =  (2.13) 

Note that a few more parameters than just magnitude and distance are needed to obtain this lnSA 
prediction; here we have also assumed a rock site and a strike-slip mechanism for the earthquake. The 
median of (non-log) SA is simply the exponential of this number, which in this case is 0.065 g.  

Looking back to section 1.3.4, we recall that the mean and standard deviation of lnPGA for this 
event was  

 ln 2.2673PGA = −  (2.14) 

 ln 0.57PGAσ =  (2.15) 

This mean lnPGA translates to a median PGA of 0.104g.  

The only thing needed further to compute the joint distribution of PGA and SA is the correlation 
coefficient between the two (typically referred to using the Greek letter ρ). These correlation 
coefficients have been determined in a manner similar to the way that ground motion prediction 
models are calibrated; several documents provide these coefficients (e.g., Baker and Cornell 2006; 
Baker and Jayaram 2008), and estimate a ρ of approximately 0.7 for this case.  

Now let us consider a prediction of the distribution of PGA, given knowledge of the SA(0.5s) 
value for a ground motion coming from the specified earthquake event. Because of the joint normality 
of lnPGA and lnSA, we can write the conditional mean and standard deviation of lnPGA as simply 

 lnln( | ) ln( ) SA PGAPGA SA PGA ρε σ= +  (2.16) 

 2
ln | ln1PGA SA PGAσ ρ σ= −  (2.17) 
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where all parameters have been defined above except SAε . That parameter is the number of standard 
deviations by which a given lnSA value differs from its mean predicted value. Mathematically, it can 
be written 

 
ln

ln ln( )
SA

SA

x SAε
σ
−

=  (2.18) 

where x is the observed SA value, and the other terms are the mean and standard deviation from the 
original ground motion prediction model. 

Now imagine that we have observed an SA value of 0.2g from the magnitude 5 earthquake at a 
distance of 10 km. Using equation 2.18, we find 

 
ln

ln ln( ) ln 0.2 ( 2.7207) 1.4
0.8SA

SA

x SAε
σ
− − −

= = =  (2.19) 

That is, the observed spectral acceleration is 1.4 standard deviations larger than the mean predicted 
value associated with this earthquake.  

If SA was larger than its mean, and SA and PGA are correlated, then knowledge of this large SA 
value should increase our predictions of PGA for the given ground motion. We make this increased 
prediction using equation 2.16 

 lnln( | ) ln( ) 2.2673 0.7(1.4)(0.57) 1.7124SA PGAPGA SA PGA ρε σ= + = − + = −  (2.20) 

Taking an exponential of this number tells us that the median conditional PGA is 0.18g (a significant 
increase from the median prediction of 0.104g we made before we had observed SA=0.2g). 

Knowledge of SA should also decrease our uncertainty in PGA, and this is reflected in equation 
2.17 

 2 2
ln | ln1 1 0.7 (0.57) 0.41PGA SA PGAσ ρ σ= − = − =  (2.21) 

Using the updated conditional mean and standard deviation of PGA, we can now predict the 
probability of exceeding different PGA values conditional upon SA(0.5s) = 0.2g, by using equation 
1.15 with our updated conditional mean and standard deviation. Some sample results are summarized 
in Table 2.3. The first column lists a series of PGA values of potential interest. The second column 
lists the probability of exceeding those PGA values, given a magnitude 5 earthquake at a distance of 
10 km, but not yet conditioned on any observed SA value. That is, the second column was computed 
using the original mean and standard deviation from equations 2.14 and 2.15. Note that this calculation 
is identical to the one from Table 1.2. In the third column of Table 2.3, we compute probabilities of 
exceeding the same PGA values, but this time conditioned upon knowledge that SA(0.5s) = 0.2g. That 
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is, we evaluate equation 1.15 with our new conditional mean and standard deviation. Examining the 
second and third columns of this table, two interesting features are apparent. First, the probability of 
exceeding low PGA values has increased significantly, because we now know that the correlated 
parameter SA(0.5s) is larger than usual for this event. Second, we see that the probability of exceeding 
very large PGA values has actually decreased. The decrease is because knowledge of SA has reduced 
our uncertainty in PGA. Although we know that SA is larger than its mean prediction, we have also 
eliminated the possibility that SA is even more extreme than the observed value, so the most extreme 
PGA values actually become less likely. Finally, in the fourth column of the table, we compute the 
conditional probability of PGA equaling the various values of interest, using equation 1.19 

Table 2.3: PGA probabilities associated with a magnitude 5 earthquake at 10 km, and an SA(0.5s) 
value of 0.2g. 

jx  ( )jP PGA x>  ( | 0.2)jP PGA x SA> =  ( | 0.2)jP PGA x SA= =  

0.05 0.8994 0.9992 0.0727 
0.1 0.5247 0.9265 0.5263 
0.2 0.1242 0.4002 0.2943 
0.3 0.0311 0.1058 0.0806 
0.4 0.0089 0.0253 0.0191 
0.5 0.0029 0.0061 0.0046 
0.6 0.0010 0.0016 0.0011 
0.7 0.0004 0.0004 0.0003 
0.8 0.0002 0.0001 0.0001 
0.9 0.0001 0.0000 0.0000 

 

To aid in intuitive understanding of these calculations, Figure 2.7 shows a schematic illustration of 
the joint distribution referred to above. The horizontal axes represent the range of (log) PGA and SA 
values that might result from earthquakes with a given magnitude and distance. The contour lines 
illustrate the contours of the joint distribution of PGA and SA. The centroid and spread of these 
contours with respect to each horizontal axis are specified by the mean and standard deviation from 
ground motion prediction models. The correlation between the two parameters is reflected by the 
elliptical shape of the contours, which means that large values of lnSA are likely to be associated with 
large values of lnPGA. What we are interested in here is the distribution of PGA, given that we have 
observed some SA value. This is represented by cuts through the joint distribution. The conditional 
distributions at two cuts (i.e., two potential SA values) are shown on the vertical axis of the figure. The 
probability of exceeding some PGA value x1 is represented by the area of the conditional distribution 
to the right of x1. We see from the two cuts that as the observed lnSA value gets larger, the probability 
of exceeding x1 also gets larger. That is the effect we also saw in the third column of Table 2.3. 
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Figure 2.7: Schematic illustration of the joint distribution of PGA and SA.  
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Section 3  Conclusions 

 

 

 

We have now completed an overview of probabilistic seismic hazard analysis (PSHA), and several 
extensions of the basic methodology. Example calculations have been presented to illustrate how the 
computations are performed in practice. With these tools, one can quantify the risk of ground motion 
shaking at a site, given knowledge about seismic sources surrounding the site.  

Having now considered the many sources of uncertainty present when predicting future shaking at 
a site, it is hopefully clear to the reader why deterministic approaches to seismic hazard analysis can 
be unsatisfying. It should be clear that there is no such thing as a deterministic “worst-case” ground 
motion, and that attempts to identify an alternate deterministic ground motion necessitate making 
decisions that may be arbitrary and hard to justify. 

PSHA is fundamentally an accounting method that lets one combine diverse sources of data 
regarding occurrence rates of earthquakes, the size of future earthquakes, and propagation of seismic 
shaking through the earth. It would be impossible to model the distribution of future earthquake 
shaking at a site through direct observation, because one would have to wait thousands or millions of 
years to collect enough observations to make a reasonable inference regarding rare ground motions. 
But, by incorporating many sources of data into the calculations, it becomes possible to project out to 
these low probabilities with scientifically-defensible and reproducible models.  

The basic PSHA calculation, and its required inputs, was discussed in Section 1. In Section 2, 
several extensions were presented, such as deaggregation and uniform hazard spectra. There is also a 
vast literature regarding the accurate estimation of the many inputs, such as occurrence rates of 
earthquakes and their magnitude distributions, which was not discussed here. References for further 
study on these topics are provided in Section 5 for the interested reader.  
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Section 4  A review of probability 

 

 

 

Probability is so fundamental to probabilistic seismic hazard analysis that the word appears in its title. 
The calculations in this document thus rely heavily on the use of probability concepts and notation. 
These probabilistic tools allow us to move through calculations without having to stop and derive 
intermediate steps. The notational conventions allow us to easily describe the behavior of uncertain 
quantities. It is recognized that these concepts and notations are not familiar to all readers, however, so 
this section is intended to provide a brief overview of the needed material. Readers desiring more 
details may benefit from reviewing a textbook dedicated specifically to practical applications of 
probability concepts (e.g., Ang and Tang 2007; Benjamin and Cornell 1970; Ross 2004). 

4.1 Random events 

The most basic building block of probability calculations is the random event: an event having more 
than one possible outcome. The sample space (denoted S) is the collection of all possible outcomes of 
a random event. Any subset of the sample space is called an event, and denoted E. Sample spaces and 
events are often illustrated graphically using Venn diagrams, as illustrated in Figure 4.1. 

 
Figure 4.1: Venn diagram illustrating a sample space and events. 
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For example, the number obtained from rolling of a die is a random event. The sample space for 
this example is {1,2,3,4,5,6}S = . The outcomes in the event that the number is odd are 1 {1,3,5}E = . 
The outcomes in the event that the number is greater than three are 2 {4,5,6}E =  

We are commonly interested in two operations on events. The first is the union of E1 and E2, 
denoted by the symbol ∪ . 1 2E E∪  is the event that contains all outcomes in either E1 or E2. The 
second is the intersection. E1E2 (also denoted 1 2E E∩ ) is the event that contains all outcomes in both 
E1 and E2.  For example, continuing the die illustration from above, 1 2 {1,3,4,5,6}E E =∪  and 

1 2 {5}E E =∩ . 

Special events 

There are a few special terms and special events that are often useful for probability calculations:  

The certain event is an event that contains all possible outcomes in the sample space. The sample 
space S is the certain event.  

The null event, denoted φ, is an event that contains no outcomes.  

Events E1 and E2 are mutually exclusive when they have no common outcomes. E1E2 = φ if E1 and 
E2 are mutually exclusive. 

Events E1, E2…En are collectively exhaustive when their union contains every possible outcome of 
the random event (i.e., 1 2 ... nE E E S=∪ ∪ ∪ ). 

The complementary event, 1E , of an event E1, contains all outcomes in the sample space that are 
not in event E1. It should be clear that, by this definition, 1 1E E S=∪  and 1 1E E ϕ= . That is, 1E  and  
E1 are mutually exclusive and collectively exhaustive.  

Axioms of probability 

We will be interested in the probabilities of occurrence of various events. These probabilities must 
follow three axioms of probability: 

 0 ( ) 1P E≤ ≤  (4.1) 

 ( ) 1P S =  (4.2) 

 1 2 1 2( ) ( ) ( )P E E P E P E= +∪ , for mutually exclusive events E1 and E2 (4.3) 

These axioms form the building blocks of all other probability calculations. It is very easy to derive 
additional laws using these axioms, and the previously-defined events. For example,  

 ( ) 1 ( )P E P E= −  (4.4) 

 ( ) 0P ϕ =  (4.5) 
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 1 2 1 2 1 2( ) ( ) ( ) ( )P E E P E P E P E E= + −∪  (4.6) 

4.2 Conditional probabilities 

The probability of the event E1 may depend upon the occurrence of another event E2. The conditional 
probability P(E1|E2) is defined as the probability that event E1 has occurred, given that event  E2 has 
occurred. That is, we are computing the probability of E1, if we restrict our sample space to only those 
outcomes in event E2. Figure 4.2 may be useful as the reader thinks about this concept.  

 
Figure 4.2: Schematic illustration of the events E1 and  E2. The shaded region depicts the area 
corresponding to event E1E2. 

We can deduce the following from Figure 4.2 

 
1 2

1 2 2
2

2

( )( | )    if ( ) 0
( )

0    if ( ) 0

P E EP E E P E
P E

P E

= >

= =
 (4.7) 

Rearranging this equation gives  

 1 2 1 2 2( ) ( | ) ( )P E E P E E P E=  (4.8) 

Independence 

Conditional probabilities give rise to the concept of independence. We say that two events are 
independent if they are not related probabilistically in any way. More precisely, we say that events E1 
and E2 are independent if 

 1 2 1( | ) ( )P E E P E=  (4.9) 

That is, the probability of E1 is not in any way affected by knowledge of the occurrence of E2. 
Substituting equation 4.9 into equation 4.8 gives 
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 1 2 1 2( ) ( ) ( )P E E P E P E=  (4.10) 

which is an equivalent way of stating that E1 and E2 are independent. Note that equations 4.9 and 4.10 
are true if and only if E1 and E2 are independent. 

Total Probability Theorem 

Consider an event A and a set of mutually exclusive, collectively exhaustive events E1, E2 … En. The 
total probability theorem states that 

 
1

( ) ( | ) ( )
n

i i
i

P A P A E P E
=

=∑  (4.11) 

In words, this tells us that we can compute the probability of A if we know the probability of the Ei’s, 
and know the probability of A, given each of these Ei’s. The schematic illustration in Figure 4.3 may 
help to understand what is being computed. At first glance, the utility of this calculation may not be 
obvious, but it is critical to many engineering calculations where the probability of A is difficult to 
determine directly, but where the problem can be broken down into several pieces whose probabilities 
can be computed.  

Consider the following example, to illustrate the value of this calculation. You have been asked to 
compute the probability that Building X collapses during the next earthquake in the region. You do not 
know with certainty if the next earthquake will be strong, medium or weak, but seismologists have 
estimated the following probabilities: 

P(strong) = 0.01 
P(medium) = 0.1 
P(weak) = 0.89 

Additionally, structural engineers have performed analyses and estimated the following: 

P(collapse|strong) = 0.9 
P(collapse|medium) = 0.2 
P(collapse|weak) = 0.01 

Referring to equation 4.11, the “A” in that equation is the event that the building collapses, and the Ei’s 
are the events that the earthquake is strong, medium or weak. We can therefore compute the 
probability of collapse as 

 

( ) ( | ) ( )
  ( | ) ( )
   ( | ) ( )

0.9(0.01) 0.2(0.1) 0.01(0.89)
0.0379

P collapse P collapse strong P strong
P collapse medium P medium
P collapse weak P weak

=
+
+

= + +
=

 (4.12) 

The total probability theorem allows one to break the problem into two parts (size of the earthquake 
and capacity of the building), compute probabilities for those parts, and then re-combine them to 
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answer the original question. This not only facilitates solution of the problem in pieces, but it allows 
different specialists (e.g., seismologists and engineers) to work on different aspects of the problem.  

Probabilistic seismic hazard analysis is a direct application of the total probability theorem (except 
that it uses random variables, discussed below, instead of random events). The distribution of 
earthquake magnitudes and distances are studied independently of the conditional distribution of 
ground motion intensity, and this probabilistic framework allows us to re-combine the various sources 
of information in a rigorous manner. 

 
Figure 4.3: Schematic illustration of the total probability theorem. 

Bayes’ Rule 

Consider an event A and a set of mutually exclusive, collectively exhaustive events E1, E2 … En. From 
our conditional probability equations above, we can write 

 ( ) ( | ) ( ) ( | ) ( ) j j j jP AE P E A P A P A E P E= =  (4.13) 

Rearranging the last two terms gives 

 
( | ) ( )

( | )
( )

j j
j

P A E P E
P E A

P A
=  (4.14) 

This equation is known as Bayes’ Rule. An alternate form is based on substituting equation 4.11 for 
the total probability theorem in place of P(A) in the denominator of equation 4.14.  

 

1

( | ) ( )
( | )

( | ) ( )

j j
j n

i i
i

P A E P E
P E A

P A E P E
=

=

∑
 (4.15) 
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The utility of these equations lies in their ability to compute conditional probabilities, when you 
only know probabilities related to conditioning in the reverse order of what is desired. That is, you 
would like to compute P(A|B) but only know P(B|A). This is exactly the type of calculation used in the 
deaggregation calculations of Section 2.1. 

To provide a simple illustration of how this equation works, consider again the example used to 
illustrate the total probability theorem. Suppose you have just learned that an earthquake occurred and 
building X collapsed. You don’t yet know the size of the earthquake, and would like to compute the 
probability that it was a strong earthquake. Using equation 4.14, you can write 

 ( | ) ( )( | )
( )

P collapse strong P strongP strong collapse
P collapse

=  (4.16) 

Substituting the numbers from above, you then find that 

 0.9(0.01)( | ) = 0.24
0.0379

P strong collapse =  (4.17) 

It is not obvious intuitively how large that probability would be, because strong earthquakes have a 
high probability of causing collapse, but they are also extremely unlikely to occur. Like the Total 
Probability Theorem, Bayes’ Rule provides a valuable calculation approach for combining pieces of 
information to compute a probability that may be difficult to determine directly. 

4.3 Random variables 

Here we will introduce an important concept and an associated important notation. A random variable 
is a numerical variable whose specific value cannot be predicted with certainty before the occurrence 
of an “event” (in our context, this might be the magnitude of a future earthquake). Examples of 
random variables relevant to PSHA are the time to the next earthquake in a region, the magnitude of a 
future earthquake, the distance form a future earthquake to a site, ground shaking intensity at a site, 
etc.   

We need a notation to refer to both the random variable itself, and to refer to specific numerical 
values which that random variable might take. Standard convention is to denote a random variable 
with an uppercase letter, and denote the values it can take on by the same letter in lowercase. That is, 
x1, x2, x3, … denote possible numerical outcomes of the random variable X. We can then talk about 
probabilities of the random variable taking those outcomes (i.e., 1( )P X x= ). 

Discrete and continuous random variables 

We can in general treat all random variables using the same tools, with the exception of distinguishing 
between discrete and continuous random variables. If the number of values a random variable can take 
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are countable, the random variable is called discrete. An example of a discrete random variable is the 
number of earthquakes occurring in a region in some specified period of time. The probability 
distribution for a discrete random variable can be quantified by a probability mass function (PMF), 
defined as 

 ( ) ( )Xp x P X x= =  (4.18) 

The cumulative distribution function (CDF) is defined as the probability of the event that the random 
variable takes a value less than or equal to the value of the argument 

 ( ) ( )XF x P X x= ≤  (4.19) 

The probability mass function and cumulative distribution function have a one-to-one relationship 

 
all 

( ) ( )
i

X X i
x a

F a p x
≤

= ∑  (4.20) 

Examples of the PMF and CDF of a discrete random variable are shown in Figure 4.4. 

 
Figure 4.4: Example descriptions of a discrete random variable. (a) Probability mass function. (b) 
Cumulative distribution function. 

In many cases we are interested in the probability of X > x, rather than the X ≤ x addressed by the 
CDF. But noting that those two outcomes are mutually exclusive and collectively exhaustive events, 
we can use the previous axioms of probability to see that ( ) 1 ( )P X x P X x> = − ≤ . 

In contrast to discrete random variables, continuous random variables can take any value on the 
real axis (although they don’t have to). Because there are an infinite number of possible realizations, 
the probability that a continuous random variable X will take on any single value x is zero. This forces 
us to use an alternate approach for calculating probabilities. We define the probability density function 
(PDF) using the following 
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 ( ) ( )Xf x dx P x X x dx= < ≤ +  (4.21) 

where dx is a differential element of infinitesimal length. An illustration of the PDF and related 
probability calculation is given in Figure 4.5. We can compute the probability that the outcome of X is 
between a and b by “summing” (integrating) the probability density function over the interval of 
interest 

 ( ) ( )
b

X
a

P a X b f x dx< ≤ = ∫  (4.22) 

 
Figure 4.5: Plot of a continuous probability density function. The area of the shaded rectangle, 

( )Xf x dx , represents the probability of the random variable X taking values between x and x + dx.  

Note that in many of the PSHA equations above, we have approximated continuous random 
variables by discrete random variables, for ease of numerical integration. In those cases, we have 
replaced the infinitesimal dx by a finite xΔ , so that equation 4.21 becomes: 

 i ( ) ( ) ( )XXp x f x x P x X x x= Δ = < ≤ + Δ  (4.23) 

where i ( )Xp x  is the probability mass function for iX , the discretized version of the continuous random 
variable X. Reference to Figure 4.5 should help the reader understand that the probabilities of any 
outcome between x and x + xΔ  have been assigned to the discrete value x.  

Another way to describe a continuous random variable is with a cumulative distribution function 
(CDF) 

 ( ) ( )XF x P X x= ≤  (4.24) 

The PDF and CDF are related by the following 
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 ( ) ( ) ( )
x

X XF x P X x f u du
−∞

= ≤ = ∫  (4.25) 

 ( ) ( )X X
df x F x
dx

=  (4.26) 

Note that the CDF of continuous and discrete random variables has the same definition. This is 
because probabilities of outcomes within an interval are identically defined for discrete and continuous 
outcomes. Plots of continuous cumulative distribution functions are seen in the body of the document 
(e.g., Figure 1.9b and Figure 1.11b). 

Comments on notion 

This PMF/PDF/CDF notation allows us to compactly and precisely describe probabilities of outcomes 
of random variables. Note that the following conventions have been used: 

1. The initial letter indicates the type of probability being described (i.e., “p” for PMFs, 
“f” for PDFs, and “F” for CDFs).  

2. The subscript denotes the random variable (e.g., “X”), and thus is always a capital letter.  

3. The argument in parentheses indicates the numerical value being considered (e.g., “x”), 
and is thus either a lower-case letter or a numeric value (e.g., (2) ( 2)XF P X= ≤ ). 

It is worth noting that these conventions are not chosen arbitrarily here or unique to PSHA. They are 
used almost universally in all probability papers and books, regardless of the field of application. 

Conditional distributions 

A final note on random variables: we are often interested in conditional probability distributions of 
random variables. We can adopt all of the results from Section 4.2 if we recognize that the random 
variable X exceeding some value x is an event. So we can adapt equation 4.7, for example, to write 

 
| ( | ) ( | )

( )
( )

X Yf x y dx P x X x dx y Y y dy
P x X x dx y Y y dy

P y Y y dy

= < ≤ + < ≤ +
< ≤ + < ≤ +

=
< ≤ +

∩  (4.27) 

where the notation | ( | )X Yf x y  is introduced to denote the conditional probability density function of X, 
given that the random variable Y has taken value y. If we further introduce the following notation for 
the joint probability density function of X and Y 

 , ( , ) ( )X Yf x y dxdy P x X x dx y Y y dy= < ≤ + < ≤ +∩  (4.28) 

then equation 4.27 becomes 
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 ,
|

( , )
( | )

( )
X Y

X Y
Y

f x y
f x y

f y
=  (4.29) 

Similarly, equation 4.10 can be used to show that random variables X and Y are said to be 
independent if and only if 

 , ( , ) ( ) ( )X Y X Yf x y f x f y=  (4.30) 

Another example is the PSHA equations above that use integrals over the random variables for 
magnitude and distance; these are the random-variable analog of the total probability theorem 
introduced earlier for events. 

These types of manipulations, which are only briefly introduced here, are very useful for 
computing probabilities of outcomes of random variables, conditional upon knowledge of other 
probabilistically-dependent random variables. 

The normal distribution 

One particular type of random variable will play an important role in the calculations above, so we 
will treat it carefully here. A random variable is said to have a “normal” (or “Gaussian”) distribution if 
it has the following PDF 

 
2

1 1( ) exp
22

X
X

XX

xf x μ
σσ π

⎛ ⎞⎛ ⎞−⎜ ⎟= − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (4.31) 

where μx and σx denote the mean value and standard deviation, respectively, of X. This PDF forms the 
familiar “bell curve” seen above in Figure 4.5. This is one of the most common distributions in 
engineering, and has been found to describe very accurately the distribution of the logarithm of ground 
motion intensity associated with a given earthquake magnitude and distance. Because of that, we often 
want to find the probability that a normally-distributed random variable X takes a value less than x. 
From above, we know that we can find this probability by integrating the PDF over the region of 
interest 

 2

( ) ( )

1 1exp
22

x

X

x
X

XX

P X x f u du

u duμ
σσ π

−∞

−∞

≤ =

⎛ ⎞⎛ ⎞−⎜ ⎟= − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫

∫
 (4.32) 

Unfortunately, there is no analytic solution to this integral. But because it is so commonly used, 
we tabulate its values, as shown in Table 4.1. To keep this table reasonably small in size, we use two 
tricks. First, we summarize values for the “standard” normal distribution, where standard denotes that 
the random variable has a mean value (μx) of 0 and a standard deviation (σx) of 1. So the CDF becomes  
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 21 1( ) exp
22

x

P X x u du
π−∞

⎛ ⎞≤ = −⎜ ⎟
⎝ ⎠∫  (4.33) 

Because the CDF of the standard normal random variable is so common, we give it the special 
notation ( ) ( )P X x x≤ = Φ . 

If the random variable of interest, X, is normal but not standard normal, then we can transform it 
into a standard normal random variable as follows 

 X

X

XU μ
σ
−

=  (4.34) 

where U is a standard normal random variable. This means that we can use the right-hand side of 
equation 4.34 as an argument for the standard normal CDF table. That is 

 ( ) X

X

XP X x μ
σ

⎛ ⎞−
≤ = Φ⎜ ⎟

⎝ ⎠
 (4.35) 

where Table 4.1 provides values of ( )Φ . 

A second trick used to manage the size of the standard normal CDF table is to note that the normal 
PDF is symmetric about zero. This means that  

 ( ) 1 ( )u uΦ − = −Φ  (4.36) 

so the CDF value a negative number can be determined from the CDF value for the corresponding 
positive number. Thus, the table is tabulated for only positive values of u. The identity of equation 
4.36 might be intuitively clear if one views the standard normal PDF illustrated at the top of Table 4.1. 
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Table 4.1: Standard normal cumulative distribution function. 

 
 

 

The joint normal distribution 
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The normal distribution can be generalized to the case of more than one random variable. Two 
random variables are said to have a joint normal distribution if they have the following joint PDF 

 , 22

1( , ) exp
2(1 )2 1

X Y

X Y

zf x y
ρπσ σ ρ

⎧ ⎫
= −⎨ ⎬−− ⎩ ⎭

 (4.37) 

where ρ is the correlation coefficient between X and Y, and  

 
2 2

2 2

( ) 2 ( )( ) ( )X X Y Y

X X Y Y

x x y yz μ ρ μ μ μ
σ σ σ σ
− − − −

= − +  (4.38) 

A plot of this joint PDF is shown in Figure 4.6. 

 
Figure 4.6: Plot of the joint normal probability density function.  

An important property of random variables having this distribution is that if X and Y are joint 
normal, then their marginal distributions ( ( )Xf x  and ( )Yf y ) are normal, and their conditional 
distributions are also normal. Specifically, the distribution of X given Y = y is normal, with conditional 
mean 

 |
Y

X Y y X X
Y

y μμ μ ρ σ
σ=

⎛ ⎞−
= + ⋅ ⎜ ⎟

⎝ ⎠
 (4.39) 

and conditional standard deviation 

 2
| 1X Y y Xσ σ ρ= = −  (4.40) 

These properties are convenient when computing joint distributions of ground motion parameters.  
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4.4 Expectations and moments 

A random variable is completely defined by its PMF or PDF (for discrete and continuous random 
variables, respectively). Sometimes, however, it is convenient to use measures that describe general 
features of the distribution, such as its “average” value, breadth of feasible values, and whether the 
distribution has a heavier tail to the left or right. We can measure these properties using moments of a 
random variable, and they are often more convenient to work with for engineering applications. 

The mean is the most common moment, and is used to describe the central location of a random 
variable. The mean of X is denoted μX or E[X]. It can be calculated for a discrete random variable as 

 
all 

( )X i X i
i
x p xμ =∑  (4.41) 

and for a continuous random variable as 

 
all 

( )X X
x

x f x dxμ = ∫  (4.42) 

Note that this is equal to the center of gravity of the PMF or PDF. The equations may be recognizable 
to some readers as being very similar to centroid calculations.  

The variation of values to be expected from a random variable can be measured using the 
variance, denoted 2

Xσ  or Var[X]. It is calculated for a discrete random variable as 

 ( )22

all 
( )X i x X i

i
x p xσ μ= −∑  (4.43) 

and for a continuous random variable as 

 ( )22

all 

( )X x X
x

x f x dxσ μ= −∫  (4.44) 

This the moment of inertia of the PDF (or PMF) about the mean.  

The square root of the variance is known as the standard deviation, and is denoted σX. It is often 
preferred to the variance when reporting a description of a random variable, because it has the same 
units as the random variable itself (unlike the variance, whose units are the original units squared).  

Means and variances are special cases of the expectation operation. The expectation of g(X) is 
defined for discrete random variables as 

 
all 

[ ( )] ( ) ( )i X i
i

E g X g x p x=∑  (4.45) 

and for continuous random variables as 
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all 

[ ( )] ( ) ( )X
x

E g X g x f x dx= ∫  (4.46) 

The mean value is the special case of expectation where g(X) = X, and the variance is the special case 
where 2( ) ( )Xg X X μ= − . These are special cases of what are called moments of random variables, but 
we will restrict the discussion here to those two special cases. 

Finally, note that the normal random variable described above uses the mean and standard 
deviation explicitly as parameters in its PDF. So given knowledge of the mean and standard deviation 
of a normal random variable, one knows its complete distribution. This is not the case for random 
variables in general, but it is one of the reasons why the normal random variable is convenient to work 
with. 
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Section 5  Further study 

 

 

Below is a list of important papers and summary books that would be valuable for those interested in 
further study. References are grouped by type, and followed by a short description of their value.  

5.1 Origins and development of PSHA 

Cornell, C. A. (1968). "Engineering seismic risk analysis." Bulletin of the Seismological Society of 
America, 58(5), 1583-1606. 

 
The original document describing PSHA. 
 

McGuire, R. K. (2007). "Probabilistic seismic hazard analysis: Early history." Earthquake 
Engineering & Structural Dynamics(in press). 

 
A summary of the early development of PSHA. 
 

5.2 Books and summary papers 

Kramer, S. L. (1996). Geotechnical earthquake engineering, Prentice Hall, Upper Saddle River, N.J. 
 
A geotechnical-engineering focused book, with chapter 4 devoted exclusively to PSHA. This 
chapter also contains many references regarding the development of PSHA, and estimation of 
the parameters needed as inputs to the calculations. 

 
McGuire, R. K. (2004). Seismic Hazard and Risk Analysis, Earthquake Engineering Research Institute, 
Berkeley. 

 
A monograph focused on probabilistic estimation of losses from earthquakes, with a 
significant portion devoted to PSHA. The monograph provides more information on practical 
estimation of the needed input parameters, and discusses several advanced topics omitted 
from this report. 

 
Reiter, L. (1990). Earthquake hazard analysis: issues and insights, Columbia University Press, New 
York. 
 

Another book describing PSHA. The author was an employee of the Nuclear Regulatory 
Commission, so his insights are particularly focused on nuclear applications. This book also 
makes the greatest effort to compare deterministic and probabilistic seismic hazard analysis 
methods. 
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Abrahamson, N. A. (2006). "Seismic hazard assessment: problems with current practice and future 
developments." First European Conference on Earthquake Engineering and Seismology, Geneva, 
Switzerland, 17p. http://www.ecees.org/keynotes.html 
 

A recent summary, with a focus on current challenges and opportunities in PSHA. 
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